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NOTE 

Stability Analysis of the Euler-Poisson Equations 

INTRODUCTION 

This paper is devoted to the numerical stability analysis 
of a one-dimensional plasma model, in the fluid mechanics 
theory approach. We shall thus consider that all individual 
particle effects are neglected and that only the fluid motion 
is taken into account. The plasma evolution is described by 
the Euler equations, density, and momentum conservation 
laws where the interactions between charged particles 
appear as a force in the right-hand side of the equations. For 
more details on this approach, see [ 11. The description of 
the electromagnetic field evolution is given by the Maxwell 
equations. We shall make several simplifying hypotheses to 
study an electrostatic model. 

After setting our framework, we study the stability of the 
numerical methods used and obtain a relatively strong 
necessary condition to ensure the convergence of the 
scheme. Namely the full implicitness of the electric field is 
necessary for the sake of stability. It is surprising in a sense, 
because a particles method, used to solve the collisionless 
Boltzmann equation, coupled with a Poisson equation in a 
similar physical parameters range does not impose such 
a strong stability condition. In the last section, we give a 
numerical comparison between several ways to introduce 
the contribution of the Poisson equation in our numerical 
scheme. 

I. DESCRIPTION OF THE MODEL 
AND LINEARIZATION 

We assume the following hypothesis: the plasma is com- 
posed of two interpenetrating fluids, the ions and the elec- 
trons (this is for simplicity; an extension to more species is 
straightforward). We neglect collision effects and viscosity. 
We suppose that the ions are fixed in space in a uniform 
distribution and that the electrons are in an isothermal 
evolution so that their evolution is described by a unique 
thermodynamical variable, the density. We suppose next 
that electrons have a thermal energy, so that a pressure term 
will appear in the Euler equations. 

In order to derive a one-dimensional electrostatic model, 
we assume that the plasma is infinite in extension and that 
the electron motions occur only in the x direction (see 

Fig. 1). Next, we suppose that there is no magnetic field; 
thus the electric field derives from a potential which satisfies 
the only Maxwell equation that does not involve the 
magnetic field: the Poisson equation. Finally, we obtain the 
following nonlinear system of partial differential equations, 
for x belonging to [0, L], 

a,n + a,nu = 0 (1) 

d,nu + d,(nu2 + p) = -(e/m) nE (2) 

E= -Vcp (3) 
-Aq=e/&,(ni-rz)), (4) 

where n, U, p denote, respectively, the density, the velocity, 
and the pressure of the electrons fluid, e and m are the 
charge and mass of the electrons, E is the electric field, 
rp the potential associated to E and ni is the ion density. 
The pressure term is given by 

p=nV2,, (5) 

where V,, the thermal velocity is defined by V$= KT/m; 
KT is the thermal energy of the electrons and is positive. The 
boundary conditions on Poisson equation (4), are q(O) = 0 
and a,cp(L) = 0. 

FIG. 1. Geometry of the model. 
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In order to analyse the numerical stability of the scheme 
we shall use to solve this system, we first need to linearize all 
the equations. We shall linearize them around an equi- 
librium state (see [ 1 or 21). We set u = 0, E = 0, and n = n,, 
as the equilibrium state. After linearization we obtain 

L?,n + c?,n,u = 0 (1.1) 

d,(n,u) + a,( V’,n) = -(e/m) n,E (1.2) 

E= -3,q (1.3) 

4 = (e/-sJn, (1.4) 

where ni = n,. We set as a new variable, u = n,u. Since the 
system ( 1. 1 ), ( 1.2) is linear and hyperbolic in the variables 
(n, u), all the classical numerical methods for solving this 
type of equations may be applied. Let us now look at these 
methods. 

11. NUMERICAL METHODS AND 
STABILITY ANALYSIS 

To discretize the Poisson equation ( 1.4), we use the classi- 
cal three points finite difference scheme. For the electric 
field, we approach the solution by a centered difference 
scheme, so that the block of Eqs. (1.3) and (1.4) will be 
solved by a numerical scheme of order two. 

For Eqs. (1.1) and (1.2) we use a classical upwind 
Godunov-type difference scheme applied to linear conserva- 
tion laws, see [3], for example. 

As we shall see below there is no way to avoid an implicit 
electric field in the right-hand side of the momentum conser- 
vation law. Both the stability analysis and the numerical 
experiments show that numerical solutions explode slowly 
in time if the electric field does not appear implicitly. 

We let d be the approximate density and N the total 
number of space grid points. We calculate an approximate 
solution of the Euler equations, by the standard upwind 
difference scheme and we obtain the following conservative 
scheme: 

Taking into account the electrostatic force, we have 

(W-d;,, +2d;-d;_,) 1 

At W”+‘=W;-- 

i 

+($-q-1) 
I 

2AX V;(d;+, -d;p,) 

+ VA-q+ 1 + 2u; - up , ) 

-At S,, (2.1) 

where S, denotes the approximated second membc! <X 
Eq. (1.2) and is a convex combination of the electric field ;LJ 
two following time steps S, = (~lnz) /I,,(~E:’ + ’ + ( I x i 1:“’ I. 
where r belongs to [0, l]. 

The discretized Poisson equation, - qy~ , -t ZC,~; 
cp;‘, I = -(c;‘co) Ax’ dy, and the electric field calculated bq 
centered difference scheme, E:’ = ( I ;‘2Ax)( cp; , --- CD;‘, , )- 
give the relation on E,, 

EI’=E:‘,, +$Ax(d;‘+, + d:‘), 

which leads, with the boundary conditions, to the expres- 
sion 

E;=<Ax d;,, + ... +d’j-m 1 +f (df+d:;) 
h L I 

In order to analyse the stability of the numerical scheme 
(2.1), we consider Fourier modes associated to our finite dif- 
feren_ce method (2.1). Thus we replace dJ’ and 07 respectively 
by de f(ki4-y nw-dr) and fiel(kiLfy -n~Jdt) in (2.1 ). Setting Q = 

k Ax/2 and p = V, At/Ax and collecting all the terms, we 
obtain the system 

J(e-hr,Af -1+2~sin28)+i(i$sin28)=0, 

6 icpsin2O+AtAxco~& 
( 

(2.2) 
x ei(N iI0 (ae-iw4r + 1 _ %) 

1 
+ qe --Iw 4r _ 1 +2@sin28)=0, 

where B, = sin(N - j) 8 cos 8 and oO, the plasma frequency, 
satisfies ~0: = n,e*/m&,. 

In order to study the discrete dispersion relation, we need 
to set the determinant of the system (2.2) to zero, which 
yields (e -- jw ” - l)* + 4j?sin* O(e-‘wd’- 1) + 4/?* sin4 e+ 
/?* sin’ 28 - iy2R(aeCiCfld’ +l-o()=O, wherey=w,Atand 
R = eiCN ~ i)0 B, 2 cos 8. Now we use the relations 

(e- imdr- 1)2 = -4 sin2 

iw4r-1-*2+2iti e - 
t+*’ 
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We then obtain the polynomial 

P(I)) = (4 + iq2R - 4/I sin’ 8 - T) II/’ 

+ 2iT$ + icry2R - 48 sin2 9 + T = 0, 

with T= i( 1 - rl) y2R + 48 sin’ f3 - 4p2 sin4 8 - fl’ sin2 28. 
From the dispersion relation, we want to find the stability 

conditions of the scheme (2.1), that is, the conditions which 
avoid the time growth of the Fourier mode. The frequency 
o may be real, imaginary, or complex. Let o = wR + io,, 
the solution is in e-~“jr = e Pr’uK’e’“” and the scheme is stable 
if w, d 0. Now 

+ = +R + i+I =‘sinGh AtI + i SW% At). 
2 cos2(mR At) + sh2(o, At) ’ 

Let the wave number k be nonvanishing and 8, such that, 
choosing j equal to N/2, we have No/2 = e0 fixed with S, = 
sin do # 0. Let C, = cos 0,,. We expand around 0 = 0, where 
Q = k Ax/2 = 26,/N. Using the Landau notations, we obtain 

A = 8( 1 - r) S;ly2( 1 - o2 + 0(Q4)) 

+4(1-a)(l-2s()S~y4(1-4482+0(84)) 

-WiI(2-B)(1 -Co 

+(l -P)(l-2cr)] y%#P+O(P)) 

- 168(1 -me’+ o(e3)) 
+ 16b2( 1 - /3)(2 - 8) O(0”) 

+4(1-a)(l-2cX)S;c;y4(1-4e*+0(84)), 

thus wi < 0 is equivalent to rl/, < 0. As a first step, we look so that A = Sty2(8(l -a) + 4( 1 - a)( 1 - 2m)y2) + O(0’). 
for a necessary condition ensuring that Clc/i < 0. Let g(x) = (1 -x)( 1 -2x). For x belonging to [0, 11, 

PROPOSITION 1. A necessary condition for stability is 
g(x) 2 - i; therefore 

a= 1. A>,S$~~(8(1-cc)-;y~)+0(8~). 

Proof. Let a = (4 + iq2R - 4p sin’ 0 - T); the sum of 
the zeros of the polynomial P is given by S = -2iT/a. If the 
imaginary part of S is positive, there exists a zero II/ such 
that $i is positive and the solution explodes in time. So we 
want to find a condition ensuring that S, is nonpositive. 
Since 

S Tti 
-= 
2 -lla(z and T,S= -jT, 

it is equivalent to find a condition such that the imaginary 
part of ( - iTti) is nonpositive. 

We set A = Im( - iTti) = - T,a, - T,a,. Recalling that 

and 

T=4/3(1 -p)sin2Q+2i(l -cr)y’ 

x cos2 6 sin( N - j) Oe’(N-J)B 

a=4-4/?(2--/?)sin28+2i(2cr-1)y2 

x cos’ 6 sin( N - j) f3ei(N-i)s, 

If CI # 1, we can find At small enough such that 0 < y2 < 
16( 1 - a), and A is positive near zero. So, necessarily, tl = 1. 

Remark. If we set c( = 1 in the expression of A, we obtain 

A=8/?(1-/?)sin2f3 

x [y’ cos’ 6 sin*(N- j)0 + 2/?(2 - fi) sin4 0 - 23. 

Let D be the term between brackets. As we expect A to be 
nonpositive, we want D to be nonpositive. A rough upper 
bound of D is y2 + 2/?(2 - fl) - 2. So a necessary condition 
to assert that A is nonpositive, is 

y2 + 2fi(2 - 8) d 2. (2.3) 

We suppose from now on that c( = 1. Our goal is to derive 
an algebraic sufficient stability condition. We extend the 
Euler variables n and u to the real axis by periodicity and we 
apply the discrete spatial Fourier transform to the grid 
function w = (w,) thus obtained. As in [S], we define the 
discrete Fourier transform as 

we obtain the expression 

A=8(1-a)y2cos28sin2(N-j)8 

+4(1-cr)(l-2c()y4cos40sin4(N-j)8 

-8~C(2-P)(1-~)+(1-B)(1-2~)1r2 
x sin’ 0 cos’ 0 sin2(N - j)0 

- 16/3( 1 - b) sin’ 8 + 16p2( 1 - /?)(2 - fl) sin4 0 

+(l-cr)(l-2c()y4cos40sin22(N-j)8. 

$(k Ax)= 5 wje’ikAX 
j= I 

with 

Wj = (d,, Vi) and N such that N Ax is equal to the period L. 

Thus we obtain the system with the same notations as in 
previous sections, 

+V’+‘(k Ax) = G(k Ax) ci)“(k Ax) - At Ax o;S(k Ax), 
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with G(k dx) = ( -Oic -:‘“) and S(k Ax) = (0, x,“= I h; + ‘e’lk d ‘), 
whereh,“+‘=fd,“+‘+d:,+,‘+ ... +dnNt_‘,+id;+‘,forl< 
j<N- 1, h>+’ = 0, a = 1 - 2/I sin’ 0, b = (At/Ax) sin 28, 
and c = p’ sin 20, with 9 = k Ax/2 and p = V, At/Ax. 

PROPOSITION 2. An algebraic sufficient stability condi- 
tion for the scheme (2.1) with a = 1 is 

CFL condition fi < 1 and Log At < 1. (2.4) 
Proof We would like to obtain an estimate such as 

II@“+ ‘11 d (1 + C At) 11 @[I, which is a sufficient stability 
condition if C is independant of time and space steps (see 
[S]). First, we look for an upper bound of /IG/J. A 
straightforward calculation gives llG/l d a2 + max(b*, c’) + 
labI + Jacl. Since the CFL condition is satisfied, Ial d 1. 
Next, lb) = At k lsin 2%/Z%/ d k At. 

Let A,, = V&o0 which corresponds to a Debye length, 
since in our framework the plasma approximation is 
valid, k&< 1 (see Cl]). Hence, lb1 <(l/J.,)dt and lab/d 
Ib( d (l/A,) At. Next lacl d [cl d V~(At/Ax)* [sin 291 d 
V+(k/Ax) At* lsin2%/2%1< k&oOAtfl<o, At. Thus J/G/I < 
1 -t- cI At, with c1 = max((o,/2 + l/2&), max( l/3,,, oO)). 

Now, we look for an upper bound of IIS(k Ax)ll. We can 
write S(a) = $ C,?=, dl+ ‘eija + B, with cr = k Ax and B = 
CTcpl’ I,“:/ cj+~d~~~e”“, wherec,=l,formdN-land 
cN= 4. 

After two changes of index (k’ = N-j-k, j’ = j - 1 ), we 
obtain B=eiOCN:-‘CN:-/-’ ,O k0 CN-kd;:~& Now, we 

make an inversion of summation, and we obtain B= 
eiu Ct:,” C,?z-0k-2 c,~ _ kd”,t_\el’“. We replace the sum on k 
by a sum on k’ = N - k and then the sum on j by a sum on 
j’ = k’ - j. Then again making an inversion of summation, 
we obtain B=eioCyzZ e--UuCc=i ckd:+leika. Now, llBl/ < 
xft2 //e~~"~kN_iCkd~+'erka/~ 6 ~,"=,(& ~Ckd~+'~*)"* 

<(N-l) I/+ll, since ck d 1. Thus, II BII d (N- 1) )I I&“‘+ i 11 
and IIS(k Ax)11 <cc, At )I @+‘lJ, where c2 = Lo:. Hence 
(l-c,At) I/++‘)1 <(l+c, At) l/fill. 

Because of condition (2.4), there exists E such that 
O<s<l and c,At<l-EE. Let K be such that K> 
(c, + c2)/s, we obtain 11 @+‘I1 d (1 + K At) /I @Ii. As cl 
and c2 do not depend on k, Ax, and At, K is independant of 
k, Ax, and At. 

III. NUMERICAL RESULTS 

We now compare between different values of c1 in the 
nonlinear case. We can thus observe numerical stability or 
instability, depending on the way in which the electric field 
occurs in the second member of the Euler equations. Since 
we need to normalize all the equations, we chose the 
dimensionless variables 

n’ = n/no, 24’ = u/c, t’ = 00 t, x’ = xwo/c, 

with w0 = k,c = noe2/meo, where c is the light speed. 

, SPACE 

FIG. 2. Initial electronic density. 

In the same way we shall denote the dimensioneless 
variables and the variables with dimension for the sake of 
simplicity. Our nonlinear equations, written here without 
dimensions, are 

f3,n + 3,nu = 0, (3.1) 

8,nu + i3,(nu2 -I- nC*) = -nE, (3.2) 

E= -Vv, (3.3) 

-Aq = (n,-n), (3.4) 

with the same notations as before and the dimensionless 
speed t verities t2 = KT/mc*, where c is the light speed. 

( DENSITY i 
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[ SPACE-2000T I 

Fig. 3. Space evolution of the electronic density for a = 0, after 200 At. 
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FIG. 4. Time evolution of the electronic density for G( = 0. 

There are many numerical methods to solve the Euler 
equations in the nonlinear case though some are more 
expensive than others. After having tested several kinds, we 
have chosen the Van Leer flux-vector splitting, because it is 
almost as precise as the others and cheaper. The general 
idea of this method is the same as the usual upwind dif- 
ference scheme, but for more details see [4]. It consists in 
splitting the flux function into two functions, a forward flux 
and a backward flux, the gradients of which will correspond 

1 DENSITY 1 
q 

1 8 
1 SPACE-500DT 1 

FIG. 5. Space evolution of the electronic density for c(= l/2, after 
500 At. 
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3 5 

2 5 

1. 5 1 
I I 1 / I I I I I 

e 50 100 

TIME 1 

FIG. 6. Time evolution of the electronic density for a = f. 

to positive and negative speeds of propagation. Letting 
g,+ ,,* be the Van Leer flux calculated at the two cellsj and 
j + 1 interface, we obtain the scheme to solve Eqs. (3.1) and 
W), 

PZ + I At 
U’ 

J = q - z (g,“, l/2 - g:- ,:.*I 

--i 

0 
At(d;+‘E;+’ 

1 DENSITY / 
3 -1 

1 

ffil 2 3 4 5 6 7 8 

j SPACE-1000DT 1 

FIG. 7. Space evolution of the electronic density for a = i, after 
1000 Af. 
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FIG. 8. Time evolution of the electronic density for c( = i. FIG. 10. Time evolution of the electronic density for cx = I. 

where the electric field is calculated in the same way as Keeping in mind the stability analysis of the associated 
before. Since the Van Leer decomposition involves the linearized problem, we expect stability only if CI = 1. The 
Mach number and since the Mach number cannot be initial conditions are the following: the speed u and the elec- 
calculated if the density vanishes (because u is calculated by tric field are equal zo zero and the density is a cubic spline 
nu/n), we add numerical threshold on density and momen- (see Fig. 2). We use 240 grid points in space uniformly dis- 
tum quantity. We have imposed density and momentum tributed in [0, L] with L = 167t, and assume that At is equal 
quantity to vanish if the density is smaller than lop7 ( 1O-7 to 0.2 (wO = 1 by normalization). We set KT= 4 KeV so 
is often the computer precision). Hence the flux vanishes that 22 = 8.10w3. We then take 30 points by wave length, so 
too. that Ax = 2n/30. Notice that with these values the condition 

(2.3) is satisfied. Figures 3, 5, 7, and 9 show the space evolu- 
/ DENSITY 1 tion of the electronic density together with the initial den- 

“I 

sity, for c( = 0, 1, 5, 1, respectively. Figures 4, 6, 8, 10 show 
the time evolution of the electronic density at a fixed space 
point with c1= 0, i, a, 1, respectively. We have chosen this 
space point at the maximum density to make sure that the 

i I fluid velocity is very small, so that we are very close to the 
linearization conditions. If c1 is not equal to 1, we can see 
that the closer CI is to 1, the slower the instability appears; it 
is asymptotically unstable and we had to increase the 
number of time steps to check that when CI is to close to 1 
(we have tried a = 1 - E with small E). 

CONCLUSION 

Theoretical analysis and numerical experiments show 
that the only stable method used to solve the Euler-Poisson 

01 2 3 4 5 6 7 e 

1 SPACE-1000CT 
equations proposed here, is the one where the electric field 
is treated fully implicitely in the second member of the 

FIG. 9. Space evolution of the electronic density for a = 1, after momementum conservation law. As said in the Introduc- 
loo0 Lit. tion, a particles method used to solve the collisionless 
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Boltzmann equation coupled with the Poisson equation in 
a similar physical parameters range does not impose such a 
strong stability condition. The point in that case is that the 
scheme is applied for each value of the fluid velocity u and 
that u is constant for each beam describing the distribution 
function. The electric field may indeed be introduced, in 
those methods, semi-implicitly at time n -t 4; see [2, 61. So, 
here we can see another difference between fluid numerical 
methods and particle numerical methods used in plasma 
physics. 
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